If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2-40x-23=0
a = 64; b = -40; c = -23;
Δ = b2-4ac
Δ = -402-4·64·(-23)
Δ = 7488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7488}=\sqrt{576*13}=\sqrt{576}*\sqrt{13}=24\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-24\sqrt{13}}{2*64}=\frac{40-24\sqrt{13}}{128} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+24\sqrt{13}}{2*64}=\frac{40+24\sqrt{13}}{128} $
| 3(y-2)=2(y-6) | | 8/3c-2=2/c-12 | | 8y-2(y+1)=2(3y-1) | | 13=45-1.7x | | 5d^2+3=0 | | 8(z+4)=5(13=z) | | 4-y=3(y-1)-5 | | |2x+7|+1=13 | | -5+6m=6m-5 | | 4(x-1)=-49 | | (13x+20)°=(7x+38)° | | 3x+7x+x+2x-19°=180 | | 2(5-9x)=-3x+6 | | x+1/2+1/4=6 | | 1/2+1/4+x=6 | | 7x+8-2x=38 | | 19=|x| | | 7-9x=-64 | | 7+7=3y-17 | | 13x-3.4=17.6-10x | | 7p-3=-3+17p | | 13x-3.4=17.6=10x | | 5x+10=5(x+12) | | x^2+6x−4=3x+6 | | 3x+53=6x−35 | | 28.07=5g+3.72 | | x2+6x−4=3x+6 | | -9+4x=-5x+9 | | 5x-8=7+2x/ | | 5x10=5(x+2) | | 4(3+2x)=-8 | | X-3/4=1/2-x |